

Prognostic Accuracy and Clinical Effectiveness of ^{68}Ga -PSMA-11 PET/CT (ILLUCCIX[®]) Imaging Followed by ^{177}Lu -PSMA-617 Therapy in Metastatic Castration-Resistant Prostate Cancer: A Systematic Literature Review

Kamboj G¹, Radotra A¹, Barman P¹, Aggarwal S¹, Papadopoulos G², Aristides M², Agresta B², and Rathi H¹

¹Skward Analytics, Gurugram, India; ²Lucid Health Consulting, Sydney, Australia

INTRODUCTION

- Accurate patient selection and early response assessment are critical to optimize health outcomes and reduce unnecessary toxicity in metastatic castration-resistant prostate cancer (mCRPC)¹
- ^{68}Ga prostate-specific membrane antigen positron emission tomography/computed tomography (^{68}Ga -PSMA-11 PET/CT) detects PSMA expression and enables a theranostic approach to identify patients suitable for ^{177}Lu -PSMA-617 therapy
- While the ^{177}Lu -PSMA-617 therapy is associated with higher costs than cabazitaxel or best supportive care (BSC), the therapy offers significant QALY gains²⁻³
- This systematic literature review (SLR) evaluates the prognostic accuracy of ^{68}Ga -PSMA-11 PET/CT imaging for treatment response assessment and its clinical effectiveness compared to no PSMA PET/CT imaging in patients with mCRPC who are potential candidates for PSMA-targeted radioligand therapy

METHOD

Search Strategy: A systematic search was conducted in Embase, Medline, and the Cochrane Library (inception to July 2023) to identify randomized controlled trials (RCTs), single-arm studies, and observational studies

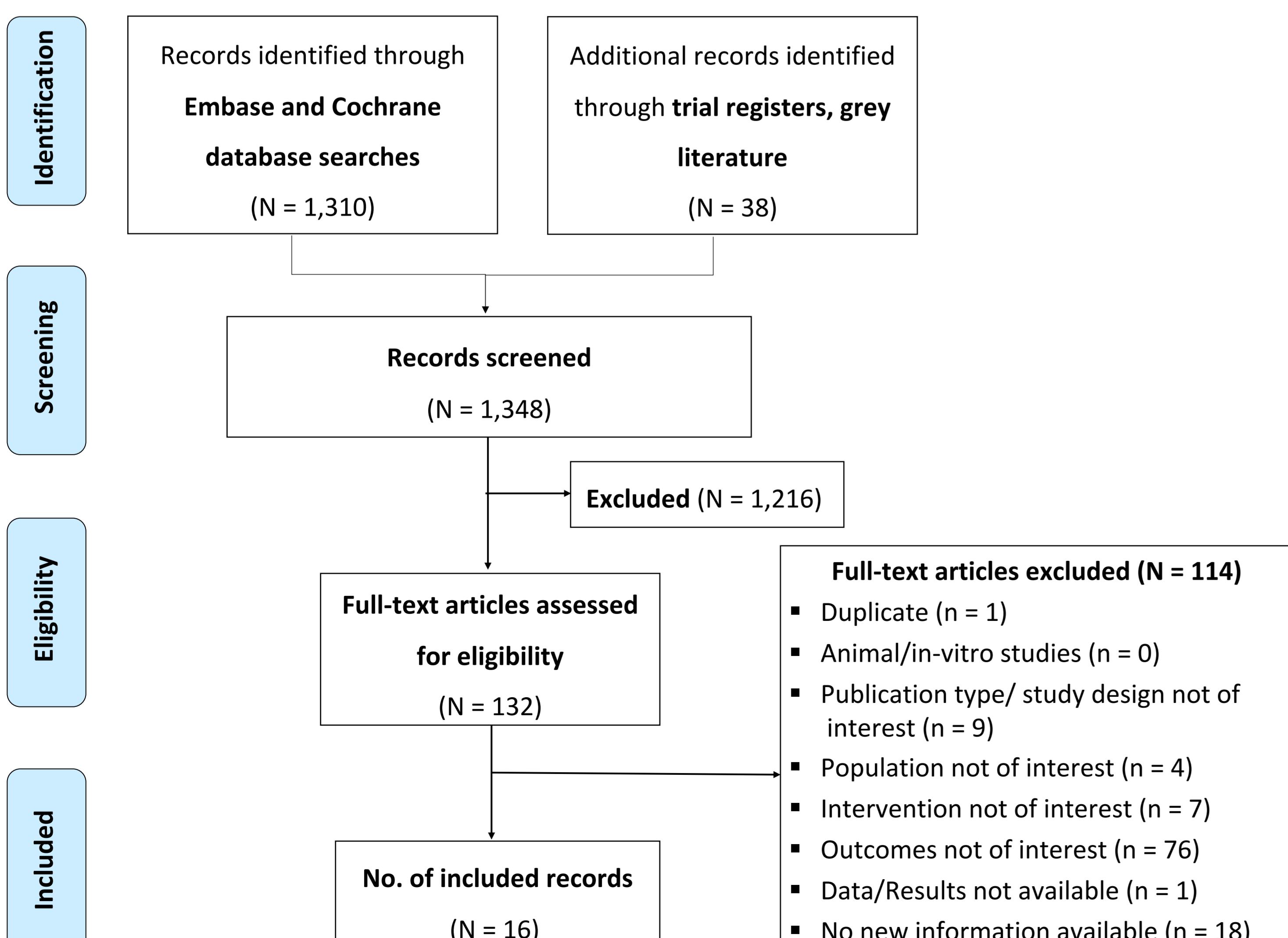
Study selection:

- Studies were included if they evaluated the prognostic accuracy of ^{68}Ga -PSMA-11 PET/CT imaging for treatment response assessment
- Studies were also included if they compared the clinical effectiveness of ^{68}Ga -PSMA-11 PET/CT imaging followed by ^{177}Lu -PSMA-617 therapy* vs no PSMA PET/CT imaging followed by cabazitaxel or BSC in mCRPC patients (Table 1)

*as a proxy for PSMA radioligand therapy

Table 1. Eligibility Criteria

Component	Description
Population	Patients with progressive or symptomatic mCRPC
Intervention	<ul style="list-style-type: none">Diagnostic test: ^{68}Ga-PSMA-11 PET/CT imagingTherapeutic intervention: ^{177}Lu-PSMA-617 (as proxy for PSMA-targeted therapy)
Comparator	<ul style="list-style-type: none">Diagnostic test: No ^{68}Ga-PSMA-11 PET/CT imagingTherapeutic intervention: Cabazitaxel or best supportive care (BSC)
Outcomes	Treatment Response Assessment: <i>Response evaluation:</i> Assessment of therapy response using tumour markers (e.g., PSA) and imaging-based criteria (RECIST, PERCIST) Clinical Effectiveness: <i>Efficacy outcomes:</i> Overall survival (OS), progression-free survival (PFS), and mortality (including cancer-specific mortality) <i>Safety outcomes:</i> Radiation exposure (patients, carers, staff) and adverse effects of therapy (haematologic, renal, xerostomia, etc.)
Study design	<ul style="list-style-type: none">Randomized controlled trials (RCTs), single-arm studies, observational studiesSLR and meta-analysis (for bibliographic searching only)


Abbreviations: BSC, Best supportive care; mCRPC, Metastatic castration-resistant prostate cancer; OS, Overall survival; PERCIST, Positron emission tomography response criteria in solid tumours; PET/CT, Positron emission tomography/computed tomography; PFS, Progression-free survival; PSA, Prostate-specific antigen; PSMA, Prostate specific membrane antigen; RCTs, Randomized controlled trials; RECIST, Response evaluation criteria in solid tumours; SLR, Systematic literature review.

RESULTS

Study Characteristics

- Sixteen publications reporting fifteen studies (two RCTs, three single-arm phase II trials, and 10 observational studies) were included in the SLR (Figure 1 and Table 2)

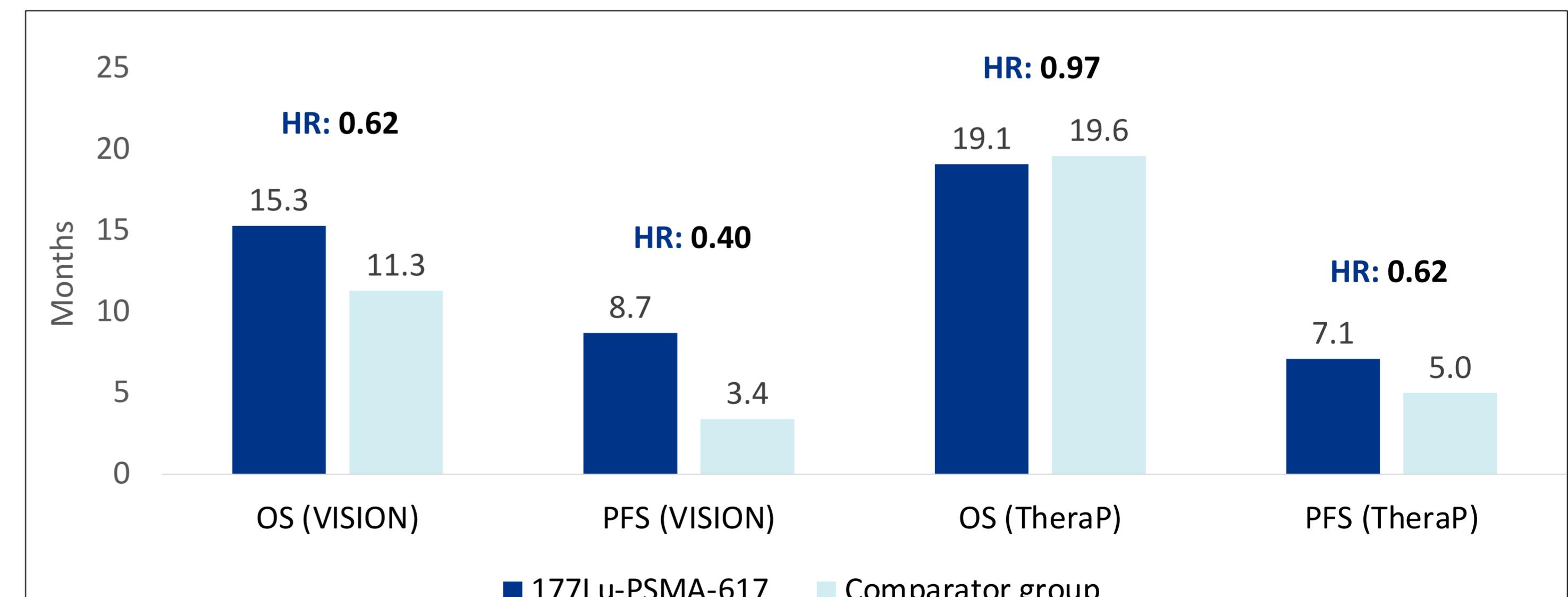
Figure 1. PRISMA Flow Diagram Depicting Study Selection and Inclusion Process

FUNDING This study did not receive any funding, and the authors declare no conflicts of interest

Table 2. Characteristic of the Included Studies

Study (Year)	N	Design	Treatment	Imaging	Response Assessment	Outcomes
Hofman et al., 2021 (TheraP) ⁴	200	Phase II RCT	^{177}Lu -PSMA-617	^{68}Ga -PSMA-11 PET/CT	RECIST, EORTC	OS, PFS, PSA response
Sartor et al., 2021 (VISION) ⁵	831	Phase III RCT	^{177}Lu -PSMA-617	^{68}Ga -PSMA-11 PET/CT	RECIST	OS, PFS, PSA response
Hofman et al., 2018 ⁶	30	Single-arm Phase II	^{177}Lu -PSMA-617	^{68}Ga -PSMA-11 PET/CT	RECIST, SUVmax	OS, PFS, PSA response
Violet et al., 2020 ⁷	50	Single-arm Phase II	^{177}Lu -PSMA-617	^{68}Ga -PSMA-11 PET/CT + ^{18}F -FDG	RECIST, EORTC	OS, PFS, PSA response
Yadav et al., 2020 ⁸	90	Single-arm Phase II	^{177}Lu -PSMA-617	^{68}Ga -PSMA-HBED-CC	RECIST, SUVpeak	OS, PFS, PSA response
Ahmazadehfar et al., 2016 ⁹	20	Retrospective observational	^{177}Lu -PSMA-617	^{68}Ga -PSMA-11 PET/CT	RECIST	PSA response
Baum et al., 2016 ¹⁰	56	Retrospective observational	^{177}Lu -PSMA RLT	^{68}Ga -PSMA-11 PET/CT	RECIST, SUVmax	OS, PFS, PSA response
Heinzel et al., 2018 ¹¹	45	Retrospective observational	^{177}Lu -PSMA-617	^{68}Ga -PSMA-11 PET/CT	PERCIST	PSA response
Grubmüller et al., 2019 ¹²	38	Retrospective observational	^{177}Lu -PSMA-617	^{68}Ga -PSMA-HBED-CC	RECIST, PERCIST	OS, PSA response
McBean et al., 2019 ¹³	50	Prospective observational	^{177}Lu -PSMA	^{68}Ga -PSMA-11 PET/CT	–	PSA response
Zang et al., 2019 ¹⁴	9	Retrospective observational	^{177}Lu -EB-PSMA-617	^{68}Ga -PSMA-617 PET/CT	Δ SUVmax	PSA response
Kesavan et al., 2021 ¹⁵	100	Retrospective observational	^{177}Lu -PSMA I&T	^{68}Ga -PSMA-11 PET/CT	PERCIST	OS, PFS
Khreish et al., 2021 ¹⁶	51	Retrospective observational	^{177}Lu -PSMA-617	^{68}Ga -PSMA-11 PET/CT	PERCIST, SUVpeak	OS, PFS
Erdogan et al., 2022 ¹⁷	23	Retrospective observational	^{177}Lu -PSMA I&T	^{68}Ga -PSMA-11 PET/CT	PERCIST, SUVmax	PSA response
Rosar et al., 2022 ¹⁸	66	Retrospective observational	^{177}Lu -PSMA-617	^{68}Ga -PSMA-11 PET/CT	PERCIST, PCWG3	OS, PSA response

Abbreviations: EORTC, European Organisation for Research and Treatment of Cancer; FDG, Fluorodeoxyglucose; I&T, Imaging and therapy; OS, Overall survival; PCWG3, Prostate Cancer Working Group 3; PERCIST, Positron Emission Tomography Response Criteria in Solid Tumours; PET/CT, Positron emission tomography/computed tomography; PFS, Progression-free survival; PSA, Prostate-specific antigen; RECIST, Response Evaluation Criteria in Solid Tumours; RLT, Radioligand therapy; SUV, Standardized uptake value.


Treatment Response Assessment

- In the TheraP trial⁴, a \geq 50% prostate-specific antigen (PSA) decline was achieved in 66% of patients treated with ^{177}Lu -PSMA-617 compared with 37% receiving cabazitaxel
- Similarly, Hofman et al., 2018⁶ reported a \geq 50% PSA decline in 57% of patients, while Yadav et al., 2020⁸ showed \geq 50% PSA declines in 32–45% of patients
- Favorable radiographic and molecular responses were observed: 56% and 42% in Violet et al., 2020⁷, and 77% and 71% in Yadav et al., 2020⁸, respectively

Clinical Effectiveness

- None of the studies directly evaluated the impact of ^{68}Ga -PSMA-11 PET/CT imaging on patient health outcomes; however, evidence from two RCTs⁴⁻⁵ showed improved outcomes with ^{177}Lu -PSMA-617 in patients selected using ^{68}Ga -PSMA-11 PET/CT
- In the TheraP trial⁴ (n=200; median follow-up of 36 months), ^{177}Lu -PSMA-617 demonstrated improved progression-free survival (PFS) (HR 0.62, p=0.0028) compared with cabazitaxel, while overall survival (OS) was comparable between arms (19.1 vs 19.6 months; HR 0.97, p=0.99) (Figure 2)
- In the VISION trial⁵ (n=831; median follow-up of 20.9 months), ^{177}Lu -PSMA-617 significantly improved PFS (8.7 vs 3.4 months; HR 0.40, p<0.001) and OS (15.3 vs 11.3 months; HR 0.62, p<0.001) compared with BSC (Figure 2)
- Across both trials, ^{177}Lu -PSMA-617 was associated with more hematologic but fewer chemotherapy-related toxicities, showing an overall manageable safety profile

Figure 2. Clinical Effectiveness Outcomes

Abbreviations: HR, Hazard ratio; OS, Overall survival; PFS, Progression-free survival; PSMA, Prostate-specific membrane antigen

CONCLUSIONS

- This review supports the theranostic approach of using ^{68}Ga -PSMA-11 PET/CT imaging to identify suitable candidates for PSMA-targeted radioligand therapy and to enable accurate assessment of treatment response
- While direct evidence of imaging-related health outcomes is lacking, downstream improvements in clinical outcomes with ^{177}Lu -PSMA-617 validate the utility of this imaging-guided treatment strategy in mCRPC

Poster presented at ISPOR EUROPE 2025, Glasgow, Scotland (9-12 Nov 2025)